A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.

نویسندگان

  • Qin-Shu Kang
  • Xiao-Fan Shen
  • Na-Na Hu
  • Meng-Jia Hu
  • Hui Liao
  • Han-Zhong Wang
  • Zhi-Ke He
  • Wei-Hua Huang
چکیده

In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymerization. After surface modification, PPM provides a high-surface area and specific affinity 3D substrate for immunoassays. Combining with well controlled microfluidic devices, the direct immunoassay of IgG and sandwich immunoassay of inactivated H1N1 influenza virus using 5 μL sample has been accomplished, with detection limits of 4 ng mL(-1) and less than 10 pg mL(-1), respectively. The enhanced detection sensitivity is due to both high surface area of PPM and flow-through design. The detection time was obviously decreased mainly due to the shortened diffusion distance and improved convective mass transfer inside the monolith, which accelerates the reaction kinetics between antigen and antibody. This work provides a novel microfluidic immunoassay platform with high efficiency thereby enabling fast and sensitive immunoassay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ electrochemical enzyme immunoassay on a microchip with surface-functionalized poly(dimethylsiloxane) channel

This paper reports a rapid microchip-based electrochemical enzyme immunoassay with surface-functionalized poly(dimethylsiloxane) (PDMS) channel. The microchip fabricated on a glass substrate by photolithography consists of a three-electrode system for electrochemical detection and is assembled with the antibody-immobilized PDMS channel by plasma treatment. For effective immobilization of target...

متن کامل

Power-free sequential injection for microchip immunoassay toward point-of-care testing.

This paper presents a simple fluid handling technique for microchip immunoassay. Necessary solutions were sequentially injected into a microchannel by air-evacuated poly(dimethylsiloxane), and were passively regulated by capillary force at the inlet opening. For heterogeneous immunoassay, microchips are potentially useful for reduction of sample consumption and assay time. However, most of the ...

متن کامل

Flow-through immunosensors using antibody-immobilized polymer monoliths.

High-sensitivity and rapid flow-through immunosensors based on photopolymerized surface-reactive polymer monoliths are investigated. The porous monoliths were synthesized within silica capillaries from glycidyl methacrylate and ethoxylated trimethylolpropane triacrylate precursors, providing a tortuous pore structure with high surface area for the immobilization of antibodies or other biosensin...

متن کامل

Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.

This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were...

متن کامل

Monolith Immuno-spotting Multiplex Immunosensors in a Microfluidic Device

Here we demonstrate for the first time, a novel fabrication method to integrate microarray spotting technology with in-situ fabricated highly porous polymer monoliths in a microfluidic platform as a high-thourouput multiplex biosensor. Parallel screening of low-abundance analytes from a complex fluidic sample can be realized by covalent linkage of various capture antibodies in discretely define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 138 9  شماره 

صفحات  -

تاریخ انتشار 2013